SeaLion Mission Architecture

Table of Contents

Stakeholder Needs	2
1.1: Primary Mission Objective A1	2
1.2: Primary Mission Objective A2	2
1.3: Primary Mission Objective A3	2
1.4: Primary Mission Objective A4	2
1.5: Primary Mission Objective A5	2
2.1: Secondary Mission Objective B1.	2
2.2: Secondary Mission Objective B2	3
3.1: Tertiary Mission Objective C1	3
3.2: Tertiary Mission Objective C2	3
3.3: Tertiary Mission Objective C3	3
Stakeholder Needs Mapping	3
User Stories	4
1: Ping Satellite	4
2: View Satellite Beacon Data	5
3: Send Request to Set Interrupt Timer	5
4: Request Telemetry or EventLog Data	5
4.1: Request Satellite Health Data	6
4.1.1: Request Satellite Health Data via S-Band Radio	6
4.2: Request Satellite Mission Data	6
5: Send Request to Set Mission Mode Duration	7
User Stories Mapping	7
User stories as Use Case Diagram	7
Data Structures	8
Satellite Health Data Packet	8
Satellite GPS Data	9
Satellite AODS Sensor Data	. 10
ECIStateVector	. 11
Mission Data	. 12
Data Structures Mapping	. 13
Finite State Machine	. 13

Stakeholder Needs

The SeaLion Mission Architecture is guided by a series of stakeholder needs, listed below.

1.1: Primary Mission Objective A1

The SeaLion mission shall establish UHF communication link with Virginia ground station

1.2: Primary Mission Objective A2

The SeaLion mission shall establish S-Band communication link with MC3 ground station

1.3: Primary Mission Objective A3

The SeaLion mission shall successfully transmit "mission data" defined above to ground stations on the Earth.

1.4: Primary Mission Objective A4

The SeaLion mission shall adhere to CubeSat standards.

Reference:

• CubeSat Design Specification Rev. 13

1.5: Primary Mission Objective A5

The SeaLion mission shall validate the operation of the Impedance Probe (IP) as a primary payload in-orbit.

2.1: Secondary Mission Objective B1

The SeaLion mission shall provide a means to validate a Multi-spectral Sensor (Ms-S) inorbit

2.2: Secondary Mission Objective B2

The SeaLion mission shall provide a means to validate a deployable composite structure (DeCS) in-orbit

3.1: Tertiary Mission Objective C1

The SeaLion mission shall qualify on-orbit the deployment and functioning of the newly developed UHF antenna system and its deployment.

3.2: Tertiary Mission Objective C2

The SeaLion mission shall qualify a CubeSat bus architecture for very-low Earth orbit (VLEO)

3.3: Tertiary Mission Objective C3

The SeaLion shall verify DeCS in-orbit behavior performance.

Stakeholder Needs Mapping

User Stories

The SeaLion Mission Architecture's stakeholder needs are then used to identify a series of user stories which then lead to design decisions captured in data structure and activity definitions.

1: Ping Satellite

As a **Ground Station Operator** I want to **Ping satellite** so that I can **Establish** communication link with satellite.

Example:

Ping the satellite in order to establish UHF communication link with Virginia ground station

Derived From:

Primary Mission Objective A1

2: View Satellite Beacon Data

As a Ground Station Operator I want to view satellite beacon data (alternating between health & mission data), received via UHF so that I can verify that satellite is operating nominally.

Example:

View satellite beacon data (health or mission data) to verify that state vector correspond with expected orbit profile and/or to validate that a mission mode was successful

Derived From:

- Primary Mission Objective A1
- Primary Mission Objective A3
- Primary Mission Objective A5
- Secondary Mission Objective B1
- Secondary Mission Objective B2
- Tertiary Mission Objective C1
- Tertiary Mission Objective C2
- Tertiary Mission Objective C3

3: Send Request to Set Interrupt Timer

As a Ground Station Operator I want to send a request to set count value at which interrupt timers (i.e., beacon, GPS ping, or orbit propagator) are triggered so that I can finetune parameters for attitude or orbit analysis or to conserve power.

Example:

Update beacon rate to transmit every 30 minutes to conserve power

4: Request Telemetry or EventLog Data

As a **Ground Station Operator** I want to **Request satellite telemetry or eventlog data** so that I can **verify/validate health status or mission data**.

Example:

Request satellite telemetry packets for local verification/validation of onboard AODS computations

4.1: Request Satellite Health Data

As a **Ground Station Operator** I want to **request satellite health data packet** so that I can **verify/validate AODS sensors & GPS data are within nominal parameters**.

Example:

Request satellite health data packet to verify or validate state vector corresponding to expected orbit profile based on pre-computed orbit propagation model

Derived From:

Request Telemetry or EventLog Data

4.1.1: Request Satellite Health Data via S-Band Radio

As a Ground Station Operator I want to request satellite health data packet via S-band radio so that I can verify/validate AODS sensors & GPS data are within nominal parameters.

Example:

Request satellite health data packet via S-band radio to verify or validate state vector corresponding to expected orbit profile based on pre-computed orbit propagation model

Derived From:

- Request Telemetry or EventLog Data
- Primary Mission Objective A2

4.2: Request Satellite Mission Data

As a **Ground Station Operator** I want to **request satellite mission data** so that I can **validate in-orbit AODS and/or payload performance**.

Example:

Request satellite mission data to verify that state vector & AODS sensor data correspond with expected orbit profile and/or validate that a mission mode was successful

Derived From:

- Request Telemetry or EventLog Data
- Primary Mission Objective A1
- Primary Mission Objective A3
- Primary Mission Objective A5
- Secondary Mission Objective B1
- Secondary Mission Objective B2
- Tertiary Mission Objective C1
- Tertiary Mission Objective C2
- Tertiary Mission Objective C3

5: Send Request to Set Mission Mode Duration

As a **Ground Station Operator** I want to **send a request to set mission mode duration** so that I can **manage time spent per mission mode**.

Example:

send a request to set Mission Mode 1 duration to 25 minutes

User Stories Mapping

User stories as Use Case Diagram

Data Structures

This section covers each data structure type in the **SeaLion Mission Architecture**.

Satellite Health Data Packet

Purpose: Data structure for satellite health data packet used for beacon telemetry

Satellite Health Data Packet Template

```
call_sign: {{call_sign}}
battery_health: {{battery_health}}
temperature_battery: {{temperature_battery}}
mode: {{mode}}
state_vector: {{state_vector}}
```

Field	Туре	Item Type	Description	Source
call_sign	string		Identifying call sign for the Sealion mission.	
battery_h ealth	float		Percent value indicating the remaining charge of the batteries.	
temperat ure_batte ry	float		The temperature of the battery. Units in Kelvin.	
mode	integer		Integer value indicating current mission mode. 0 = Safe, 1 = mission mode 1, 2 = mission mode 2, 3 = mission mode 3.	
state_ve ctor	ECIState Vector		ECI state vector from orbit propogator at time of beacon.	

Table 1. Satellite Health Data Packet Specification

Derived From:

- View Satellite Beacon Data
- Request Satellite Health Data

Satellite GPS Data

Purpose: Data structure for GPS data used for orbit propagation

Satellite GPS Data Template

```
time_stamp: {{time_stamp}}
altitude_data_GPS: {{altitude_data}}
lattitude_GPS: {{lattitude}}
longitude_GPS: {{longitude}}
```

Field	Туре	Item Type	Description	Source
time_sta mp	string		Time stamp when GPS data was acquired.	
altitude_ data_GP S	float		The altitude data of the satellite from GPS.	
lattitude_ GPS	float		Lattitude coordinate of the satellite from GPS.	
longitude _GPS	float		Longitude coordinate of the satellite from GPS.	

Table 2. Satellite GPS Data Specification

Satellite AODS Sensor Data

Purpose: Data structure for satellite AODS sensor data used for attitude determination or incremental orbit propogation

Satellite AODS Sensor Data Template

```
imu_gyro_x: {{imu_gyro_x}}
imu_gyro_y: {{imu_gyro_z}}
imu_gyro_z: {{imu_gyro_z}}
imu_magnetometer_x: {{imu_magnetometer_x}}
imu_magnetometer_y: {{imu_magnetometer_y}}
imu_magnetometer_z: {{imu_magnetometer_z}}
sun_sensor_pitch_pos: {{sun_sensor_pitch_pos}}
sun_sensor_pitch_neg: {{sun_sensor_pitch_neg}}
sun_sensor_yaw_pos: {{sun_sensor_yaw_pos}}
sun_sensor_yaw_neg: {{sun_sensor_yaw_neg}}
sun_sensor_roll_pos: {{sun_sensor_roll_pos}}
sun_sensor_roll_neg: {{sun_sensor_roll_neg}}
time_stamp: {{time_stamp}}
```

Field	Туре	Item Type	Description	Source
imu_gyro _x	float		The angular rate of the body with to respective to the x-axis in the IMU's reference frame.	
imu_gyro _y	float		The angular rate of the body with to respective to the y-axis in the IMU's reference frame.	

Field	Туре	Item Type	Description	Source
imu_gyro _z	float		The angular rate of the body with to respective to the z-axis in the IMU's reference frame.	
imu_mag netomete r_x	float		The magnetic field strength with respective to the x-axis in the IMU's reference frame.	
imu_mag netomete r_y	float		The magnetic field strength with respective to the y-axis in the IMU's reference frame.	
imu_mag netomete r_z	float		The magnetic field strength with respective to the z-axis in the IMU's reference frame.	
sun_sen sor_pitch _pos	float		Sun sensor measurement with respect to positive pitch angle.	• []
sun_sen sor_pitch _neg	float		Sun sensor measurement with respect to negative pitch angle.	• []
sun_sen sor_yaw _pos	float		Sun sensor measurement with respect to positive yaw angle.	• []
sun_sen sor_yaw _neg	float		Sun sensor measurement with respect to negative yaw angle.	• []
sun_sen sor_roll_ pos	float		Sun sensor measurement with respect to positive roll angle.	• []
sun_sen sor_roll_ neg	float		Sun sensor measurement with respect to negative roll angle.	• []
time_sta mp	string		Time stamp of the last transmission.	

Table 3. Satellite AODS Sensor Data Specification

Derived From:

ECIStateVector

Purpose: Data structure for the earth-centered inertial (ECI) state vector in cartesian coordinates computed from GPS data or orbit propagator

ECIStateVector Template

```
x: {{x}}
y: {{y}}
z: {{z}}
xd: {{xd}}
yd: {{yd}}
```

Field	Туре	Item Type	Description	Source
x	integer		position in kilometers (km) along x-axis	
У	integer		position in kilometers (km) along y-axis	
Z	integer		position in kilometers (km) along z-axis	
xd	integer		velocity in kilometers per second (km/s) along x-axis	
yd	integer		velocity in kilometers per second (km/s) along y-axis	
zd	integer		velocity in kilometers per second (km/s) along z-axis	

Table 4. ECIStateVector Specification

Mission Data

Purpose: Defines EVR (event) elements to be recorded to the eventLog during a mission mode

Mission Data Template

```
entry_tle: {{entry_tle}}
obc_sensors: {{obc_sensors}}
mission_data: {{mission_data}}
exit_tle: {{exit_tle}}
```

Field	Туре	Item Type	Description	Source
entry_tle	ECIState Vector		ECIStateVector at time of beginning of mission mode	
obc_sen	AODSSe nsorData		AODS Sensor data	
mission_ data	string		Data recorded during mission mode	

Field	Туре	Item Type	Description	Source
exit_tle	ECIState Vector		ECIStateVector at time of end of mission mode	

Table 5. Mission Data Specification

Derived From:

- View Satellite Beacon Data
- Request Satellite Mission Data

Data Structures Mapping

Finite State Machine

